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1 Introduction

This paper surveys formal modelling frameworks for workflow management. Such frameworks de-
scribe approaches in which a formalism is specifically applied to workflow modelling. We survey
existing opinions on these frameworks; we try to give a balanced overview and refrain from intro-
ducing our own opinion.

Workflow management deals with supporting business processes in organisations, it involves
managing the flow of work through an organisation [3]. Workflows are a collection of coordinated
tasks designed to carry out a well-defined complex process [29].

A workflow management system is a generic information system that supports modelling, execu-
tion, management and monitoring of workflows. Such a system operates on a workflow specification,
a description of the business processes in the organisation that should be supported. A workflow
management system can be compared to a database management system: it is a generic system
that operates on a schema definition of the (processes in the) organisation.

Workflow modelling is the task of creating workflow specifications. Such specifications will usu-
ally be used as input to a workflow management system. The use of formal workflow specifications
has often been advocated [8, 23]; formal methods reduce ambiguity and open possibilities for ver-
ification and analysis. Different formalisms have been suggested for modelling workflows; those
suggestions are the subject of this paper.

We will first summarise some important aspects of workflow management and discuss a recent
approach to systematically evaluate some workflow requirements. In section 2 we discuss Petri nets,
and advantages and critiques of using Petri nets for workflow modelling. In section 2.4 we discuss
YAWL, a recent approach to overcome the limitations of Petri net-based workflow modelling. In
section 3 we describe various approaches based on Temporal Logic, a powerful logic to reason about
dynamic situations. Finally, in section 4 we describe an approach based on Concurrent Transaction
Logic, a versatile logic for database updates.

Aspects of workflow management Jablonski and Bussler [24] distinguish five key aspects of
workflow specifications and workflow management: the functional, behavioural, informational, or-
ganisational, and operational aspect. These aspects can be seen as dimensions on which a workflow
can be defined.

The functional aspect describes what should be done in the workflow: it gives a functional
decomposition of activities in the workflow. The behavioural aspect describes when something
should be done: it gives the execution order and dependencies (control flow) of activities in the
workflow.

The informational aspect describes the data used in the workflow and the data dependencies
between activities. In a workflow management system we can distinguish internal data, which is
managed by the workflow management system, and external data, which is managed by the envi-
ronment and exists independently from the workflow management system. Activities can depend
on data from other activities; the workflow management system can usually transport such data
from one activity to another, which is described in the data-flow between activities.

The organisational aspect describes who should do the work in the workflow: it describes
constraints on the resource allocation to activities. Activities usually require resources to execute;
such resources can be human employees, but also for example computing power or a meeting room.
The organisational aspect describes the resources in the organisation, the hierarchy that exists



2 DERI TR 2005-04-07

between these resources, and the policies for assigning resources to activities.
The operational aspect describes how the workflow management system should interact with

its environment: it describes the methods for accessing or invoking external applications (e.g.
interaction mode, invocation mode, parameters) and how to communicate with human users.

Van der Aalst and van Hee [3, 4] define a workflow on three dimensions: the case dimension,
the process dimension, and the resource dimension. The case dimension denotes that a workflow
consists of different cases that are handled individually: they do not directly influence each other,
and are dealt with independently by the workflow management system. The process dimension
denotes that the workflow consists of tasks that are related to each other in some routing order.
The resource dimension denotes that the tasks in the workflow are carried out by resources, that
can be grouped in some roles or organisational units. These dimensions are related to the aspects of
Jablonski and Bussler: the process dimension corresponds to the behavioural aspect, the resource
dimension corresponds with the organisational aspect.

Workflow Patterns Recently an initiative started to systematically evaluate features of workflow
management systems. First a set of control flow patterns was compiled by van der Aalst et al.
[6], based on the various features available in existing systems and common recurring business
requirements; these patterns address the behavioural perspective of Jablonski and Bussler. A set of
data patterns was compiled later by Russell et al. [36], covering the information perspective. These
patterns identify a comprehensive workflow functionality1 and provide the basis for comparing
workflow management systems and evaluating the suitability of workflow languages.

Control flow patterns The control flow patterns are divided in several groups: basic patterns,
advanced branching patterns, structural patterns, multiple instance patterns, state-based
patterns, and cancellation patterns.

The basic patterns capture elementary control flow: a sequence of activities in which two ac-
tivities execute after each other (meaning that the second one becomes enabled when the first
one completes); a parallel split (and-split) and parallel synchronisation (and-join) of activities
in which several activities execute in parallel (or in any order) and are later synchronised
(the synchronise activity waits until all parallel branches are completed, and then continues);
and an exclusive choice (xor-split) and exclusive synchronisation (xor-join) in which one out
of several branches is chosen based on some condition and later synchronised (the synchro-
nise activity waits until the active branch completes, since only one branch is assumed to be
active).2

The advanced branching patterns capture more complicated branching scenarios and are often
not directly supported in existing systems: the multi-choice (or-split) in which one or more out
of several branches is chosen based on some condition; such a split can be joined in three ways:
the synchronising merge waits for all active branches of the split, and proceeds only after they
have completed; the discriminator is similar, but the first active branch that completes already

1note that these patterns do not describe any minimal business requirements, they are a systematic summary of
available features in existing systems. An open question is which of these patterns are essential and necessary for a
usable workflow management system.

2although the synchronisation patterns are described independently from their split counterparts, it is assumed
that they are used together, i.e. that a parallel split is followed by a parallel synchronisation.
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triggers the activity following the discriminator, all other active branches that complete later
are ignored; the multi-merge joins the active branches without synchronisation, the activity
following the multi-merge is started once for each active branch.

The structural patterns capture modelling situations that are usually forbidden in workflow
management systems: arbitrary cycles are unstructured loops3 without predefined entry- and
exit-points; implicit termination captures that a process should terminate implicitly when
there are no activities left to perform.

The patterns involving multiple instances capture situations on which one case in a workflow
has several child cases that are being instantiated in parallel. Each of these child cases needs to
complete before the parent case can continue. The problems relate to being able to instantiate
child cases from a parent case, and to being able to synchronise these instances and continue
with the parent case after all child cases complete. For synchronisation the number of child
cases is relevant, this number can be determined at design time or at runtime. If determined
at run time it can be fixed before the instantiations start, or it can dynamically change during
execution of the child cases. These parameters lead to different patterns: multiple instances
without synchronisation, multiple instances with design time knowledge, multiple instances
with a-priori runtime knowledge, and multiple instances without a priori runtime knowledge.

State-based patterns involve scenarios where an explicit notion of the state of the workflow
process is relevant: the deferred choice is a split in which one out of several branches is chosen
not by the workflow management system but by the environment; all branches are offered to
the environment and the first one to be chosen invalidates the others; the interleaved parallel
routing is an advanced sequential pattern, in which the order of the activities is arbitrary but
the activities are not executed in parallel; the milestone pattern captures that an activity
becomes enabled after completion of some activity but that it becomes disabled again if some
other activity starts.

Cancellation patterns involve retracting running cases or executing activities: the cancel
activity captures that some running activity can be cancelled by another activity or some
external event; the cancel case captures that the whole running case can be cancelled by the
execution of some activity or some external event.

Data patterns Continuing the research describing control flow patterns, Russell et al. [36] have
studied the use of data patterns for the modelling of the data aspect of workflow management
systems. They conclude that the data representation in different workflow tools and business
process modelling paradigms has a number of common characteristics. Russell et al. identify
39 data patterns recurring in workflow systems divided into four distinct groups.

Data visibility patterns define the scope in which data elements are visible and capable of
being utilised, which is primarily determined by the construct to which the data element is
bound. Eight patterns are defined that relate to data visibility. They range from the simple
pattern where data elements are bound to a task (pattern 1), to data accessible in multiple
instances of a single task (pattern 5), to environment data defined in the workflow system
that can be accessed within a workflow instance (pattern 8).

3“arbitrary cycles relate to structured loops like goto statements relate to while loops” [6].
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Data interaction patterns examine the way data elements can be passed between components
within a workflow process and are classified in two categories: internal and external data
interaction. Six patterns describe the internal data interaction covering from the simple
scenario where data flows between task instances (pattern 9), to more complex scenarios
where data flows to or from a multiple instance task to a subsequent instance task (patterns
12-13). External data interaction patterns identify how external data is transferred between
a component of the workflow and an external application. There are twelve external data
interaction patterns, characterised by their dimensions: The type of workflow component that
is interacting with the environment (task, case, workflow), whether the interaction is push
or pull and what component constitutes the initiation role (the workflow component or the
environment).

Data transfer patterns focus on the transfer of data elements between workflow components
and on the mechanisms by which data elements can be passed between workflow components.
There are seven distinct patterns in this category, ranging from transfer of the the value only
(pattern 26 and 27) to patterns dealing with the possible interaction when applying a common
data store (pattern 28, 29, 30) to patterns describing scenarios where data transformation
functions are applied to a data element (pattern 31, 32).

The final set of patterns, called data-based routing patterns, capture the various ways in
which data elements can interact with other workflow aspects. There are seven patterns in
this category, ranging from scenarios where data-based preconditions (pattern 33 and 34) or
postconditions (pattern 35 and 36) have to be checked prior to execution of a task to data-
based routing (pattern 39) describing the ability to alter the control flow within a workflow
case to trigger one or several subsequent task instances depending on an expression evaluating
the values of data elements.

2 Petri nets

2.1 Classical Petri nets

Petri nets are a formalism for modelling dynamic systems. They are graphical, mathematically
formalised, and well analysable. The original nets were developed by Petri [32]; later, various
extensions were developed providing new modelling constructs. Some of these extensions provide
easier modelling keeping the same expressiveness as classical Petri nets, some provide more expres-
siveness [31]. Petri nets have been applied to a large number of areas, including communication
protocols, performance evaluation, and distributed systems [30], because they are very general and
were the first to model concurrency [10].

A classical Petri net consists of places and transitions. Places contain zero or more tokens,
transitions connect places to each other with directed arcs: each transition has a number of input
places and a number of output places. A Petri net has an initial marking, stating the number of
tokens in each place. The marking changes discretely by firing of transitions: when a transition
fires, it consumes one token from all its input places, and produces one token in all its output
places. A transition can only fire when it is enabled: if in each of its input places there is at least
one token. When more than one transition is enabled any one of them can fire but they cannot fire
simultaneously.
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input places transition output places
preconditions event postconditions
input data computation step output data
resources needed task or job resources released
conditions logical clause conclusions

Table 1: Typical interpretations of places and transitions in Petri nets

Definition Formally, a Petri net is a tuple PN = (P, T, F, M0), where P is a set of places, T is
a set of transitions, F ⊆ (P × T ) ∪ (T × P ) is the flow relation from places to transitions and vice
versa, and M0 : P → N+ is the initial marking. The sets of places and transitions are disjoint and
a Petri net should contain at least one place or one transition: P ∩ T = ∅, P ∪ T 6= ∅.

The evolution of a Petri net is described by a sequence of markings representing subsequent
global states of the Petri net: (M0,M1, · · · ,Mn). A successive pair of markings (Mi,Mj) denotes
the firing of one transition. Such a pair is legal if and only if there is one transition that is enabled
in Mi, and the marking of the input places of that transition is decreased by one between Mi and
Mj , and the marking of the output places of that transition is increased by one between Mi and
Mj .

Alternative definitions A Petri net can alternatively be described using an incidence matrix
that denotes how a transition changes the marking of each place [30, 34]. For a Petri net with n
transitions and m places, the incidence matrix A = [aij ] is an n×m-matrix. Each entry aij = a+

ij+a−ij
in this matrix denotes the change of tokens in place j induced by the firing of transition i. The
number of tokens produced in j is denoted by a+

ij , the number of tokens consumed in j is denoted
by a−ij . A transition i is enabled if and only if for all places j the number of tokens to be consumed
is smaller than its marking: a−ij ≤M(aj).

A Petri net can also be depicted graphically, using boxes for transitions and circles for places.
The flow relation is depicted with arcs connecting places and transitions, and the marking is
depicted with black dots in each place.

A Petri net is an abstract model, it can be used to represent different situations. Table 1
shows some examples of possible interpretations, from [30]. For example, input and output places
can be used to describe pre- and postconditions for events, the firing of a transition denotes the
occurrence of an event. Or, input and output places can represent resources that are reserved and
released (or used and produced) by an activity. One can also use a Petri net with an interpretation
that combines the examples given; usually the labels given to transitions and places, together with
the accompanying text, explain the interpretation that is given to the Petri net. Note that the
semantics of a Petri net is independent of the interpretation given to it: a Petri net behaves exactly
the same whether its places represent input data, preconditions, or rule antecedents.

Petri net variants Many extensions have been developed that ease the modelling of situations
using Petri nets or extend the expressivity of classical Petri nets; we will shortly discuss a number
of relevant extensions for workflow modelling.

Weighted Petri nets allow modelling classical Petri nets in a more succinct way: weights are
added to arcs to denote that multiple tokens are consumed and produced during the firing of a
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transition. A k-weighted arc corresponds to k parallel arcs in classical Petri nets.
Coloured Petri nets [25, 41] allow modelling the identity of individual tokens by attaching values

(or colour) to tokens. This enables more detailed modelling of the objects that the tokens represent
in the Petri net; in a Petri net of a workflow model tokens represent for example cases that are
handled during the workflow, or resources that are required for activities. In coloured Petri nets
one can model attributes of the cases, for instance a complaint number or the salary of an employee.
Transitions can change the values of tokens; they operate on the objects that are represented by
the tokens. The colour of tokens can also be a mare elaborate data structure.

Timed Petri nets allow modelling the temporal behaviour of a system. There are a number
of ways to introduce time into the classical Petri net [1]. A common approach is to associate a
timestamp with each token (denoting the moment in time that the token is available for consump-
tion) and to associate a time delay with each transition (denoting the change to the timestamp of
produced tokens). When modelling time delays in Petri nets it is possible to analyse quantitative
performance indicators such as response times, occupation times, and throughput times.

Hierarchical Petri nets allow compositional modelling: a transition can be not only atomic but
also complex, in which case there is some subnet that defines this complex task. The net can be
unfolded by replacing all complex transitions with their defining subnets. Hierarchical (or modular)
modelling makes it easier to create, maintain, and understand models.

A special class of high-level Petri nets suitable for workflow modelling is identified by van der
Aalst [3]; these workflow nets have two special properties: they have exactly one input place and
one output place, and no dangling transitions or places exist (each transition and each place are
on a path from the input place of the net to the output place of the net).

2.2 Workflow modelling using Petri nets

Recall that according to van der Aalst [4], a workflow can be viewed on three dimensions: the case
dimension, the process dimension, and the resource dimension. The case dimension denotes that
a workflow consists of different cases that are treated individually, the process dimension denotes
that a workflow consists of several tasks in some routing order, and the resource dimension denotes
that the tasks in a workflow are carried out by some organisational resources.

Such a workflow can be modelled in a workflow net as follows [3]: cases are modelled by high-level
tokens, that have an identity, are distinguishable from each other, and can contain structured data;
the process dimensions is constituted by places and transitions: tasks are modelled by transitions,
conditions on tasks are modelled as places. A workflow model can thus be constructed specifying
how cases are routed through tasks, and how the execution of tasks changes the conditions for
executing tasks. The Petri net can model routing constructs like sequences, parallel splits and
joins, exclusive splits and joins, and iterations; see [6, 24] for demonstrations on modelling advanced
routing constructs using Petri nets. Since a workflow management system is not in complete control
of a workflow but is only supporting it, the difference between the enabling of a task and the
execution of a task is important. Each task needs to be enabled before it can be executed, but an
enabled task does not have to execute. The execution of a task is determined by the environment
and not by the workflow management system. This is modelled by triggers, which are external
events that leads to the execution of an enabled task. A trigger can be a user action, a clock event,
an external message, or automatic (which means that if the task is enabled, it is directly executed).
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Advantages Many researchers have advocated using Petri nets for workflow modelling, e.g. [4,
18, 24, 37, 42]. Van der Aalst [2] mentions three reasons for using Petri nets: their formal semantics,
the fact that they are state-based instead of event-based, and the abundance of analysis techniques
available:

First, having formal semantics has the advantages that a workflow specification is unambiguous,
that the interpretation of a workflow specification is defined mathematically and does not depend
on the implementation decision of particular tools, and that it is possible to reason formally about
properties of a workflow specification. (These advantages apply equally to all formal frameworks,
they are not specific to Petri nets.)

Second, being state-based instead of event-based means that states are modelled explicitly. In
contrast, event-based frameworks only model the transitions between states explicitly. Modelling
the states of a workflow explicitly is useful in workflow modelling since (a) it allows a distinction
between enabling of a task and execution of a task (a task must be enabled before it is executed,
but it does not have to execute when it is enabled), an enabled task can wait for a trigger: a user
action, an external message, or a time event; (b) it allows modelling competitive tasks (where two
tasks are enabled for the same case and the first task to execute ’steals’ the case from the other one);
(c) it allows cancellation of cases by removal of tokens from places; (d) in distributed workflows,
it allows transfer of cases from one system to another by transferring the relevant tokens; (e) it
models workflow systems as reactive to the environment by allowing external events to change the
state of the system.

Finally, many analysis techniques exist for verifying certain qualitative and quantitative prop-
erties of a Petri net workflow model. Interesting qualitative properties include checking possible
occurrences of deadlocks, checking reachability of all tasks, checking boundedness of the tokens in
all places. It is also possible to verify performance measures such as response times, waiting times
and resources occupation rates.

2.3 Problems of Petri nets

Workflow management systems are reactive According to Eshuis and Dehnert [20] the
standard token-game semantics of Petri nets is not completely suitable for modelling workflow
management systems. The token-game semantics of Petri nets models closed active systems, where
workflow management systems are actually open, reactive systems. The behaviour of some workflow
model under the token-game semantics can thus be different than the run-time behaviour of a
workflow engine using that same model.

A workflow management system does not execute activities but merely coordinates the execution
of these activities by human actors or software systems. A workflow management system does not
control the environment but reacts to events in the environment (start of cases, termination of
scheduled tasks) by creating certain effects in the environment (initialisation of activity instances,
scheduling of follow-up tasks). A reactive system is usually modelled using event-condition-action
rules, stating the actions with which the system should respond to events. A reactive system must
respond to events in the environment with the actions specified in its rules.

Eshuis et al. [19, 20, 21] describe several problems when using Petri nets for modelling workflow
management systems. The underlying problem is that the distinction between the environment
and the workflow management system is not captured:

Events In a Petri net events can be modelled in various ways:
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Events can be modelled as tokens: a place is created for each input event, in which the
environment is supposed to place a token when an event occurs. The problem is that event
broadcasting is not possible since transitions consume these event tokens, this makes for
example cancellation events problematic to model.

Events can be modelled as transitions: a transition is created for each event. Synchronisation
is needed between transitions that model activities and transitions that model events, to
model that a transition is triggered by the occurrence of an event.

Activities In a Petri net activities can be modelled in various ways:

Activities can be modelled as transitions: a transition is created for each activity, denoting
the state change by executing the activity. The first problem is that transitions in a Petri net
are instantaneous while activities in a workflow are not (this can be addressed by modelling
both a begin-activity and an end-activity transition).

The second problem is that using transitions to model activities gives the false impression
that the workflow management system executes activities; this is not the case, activities are
executed by the environment. Other transitions in the Petri net however do model some
action of the workflow management system (e.g. routing and decision transitions). But the
distinction between transitions that indicate actions by the environment and transitions that
indicate actions by the workflow management system is not captured in the Petri net. This
poses problems if we would like these transitions to behave differently.

The third problem is that in the token-game semantics of Petri nets transitions are not directly
suitable to model a reactive system: enabled transitions may fire (but do not have to do so),
but a reactive system must react to occurring events; in the worst case firing in a Petri net
can be postponed forever which contradicts the notion of reactivity. To model a reactive
system correctly one needs to distinguish transitions that are used to model activities from
transitions that are used to model events: the semantics of these transition types should
differ.

Activities can also be modelled as places: a place is created for each activity denoting that
the activity is in progress. The problem is that changes in a Petri net can only occur through
the firing of transitions. Since activities should be able to update case attributes they can
not be captured modelling them as places.

Data In a Petri net several issues exist concerning data modelling:

Who updates the data? A workflow management system does not execute any activity itself,
it merely routes cases to workflow participants. However, activities are usually modelled
as transitions, and the case data (usually modelled using coloured Petri nets) are changed
in the transition. This does not model the situation faithfully. Again, it is necessary to
distinguish between the environment and the workflow management system to capture that
data is updated by workflow participants.

How to ensure data integrity? When activities are modelled as transitions that update case
data (token data) one needs mechanisms to model and ensure transactional properties of data
access without unnecessarily restricting concurrent data access. This is cumbersome to model
in Petri nets.
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Eshuis et al. propose two solutions for these issues: the first solution is based on UML activ-
ity diagrams, for which a reactive formal semantics is provided. Workflows specified in activity
diagrams can be verified using temporal logic; we describe this in section 3.2.

The second approach consists of an alternative, reactive, semantics for Petri nets instead of the
classical token-game semantics that deals with the above issues [20]. The approach takes three
steps to address the problems noted.

First, the representation of workflow tasks is refined such that a task is not modelled by a
single transition, but by transitions announce task, begin task, end task, and record task completion.
Explicitly modelling these phases in a workflow task allows one to distinguish more clearly between
the things that are performed by the workflow management system and those that are performed
by the environment of the workflow management system: announcing and recording completion
of tasks is done by the workflow management system, but beginning and ending tasks (actually
performing the task) is done by the environment (an employee of the organisation or an external
software system).

Secondly, the division of power between the workflow management system is explicitly mod-
elled by distinguishing internal and external transitions. Internal transitions are transitions that
are executed by the workflow management system, external transitions are executed by the envi-
ronment. Announcing tasks and recording their completion is represented by an internal transition,
and also decision and routing tasks are represented by internal transitions (these are tasks in which
the workflow management system decides which activity should be performed next based on some
business rules). The beginning and ending of tasks are modelled as external transitions, as are
events (those are not things that the workflow management system does, but it merely observes
them).

The final step is to adjust the semantics of classical Petri nets to use the separation between
internal and external transitions to model reactive systems. To transform a Petri net into a reactive
Petri net the standard firing rule should change, because it states that an enabled transition may
fire. That is appropriate for modelling the environment since it is not controlled by the workflow
management system. But for the workflow management system itself a must firing rule is more
appropriate since otherwise the system might fail to respond to an external event, which would
contradict the definition of a reactive system. Also, internal transitions have priority over external
transitions, which ensures that the system actually reacts to all external events in an appropriate
way.

These changes lead to a model where the environment leads: an external transition triggers all
relevant internal transitions, which will fire to react to the external transition; then the environment
can change again after which the system can react again.

Support for workflow patters According to van der Aalst and ter Hofstede [5], Petri nets have
three limitations when modelling workflows: they are ill-suited for the workflow patterns involving
(1) multiple instances, (2) advanced synchronisation, and (3) cancellation.

Patterns involving multiple instances occur in workflows where some child case is instantiated
a number of times while dealing with some case. The number of instantiations of these child cases
can be defined during design-time or during run-time. For example, during a conference review
process, for each submitted paper a number of reviewers is selected and asked for their opinions;
these reviews are child-cases of the submitted paper, the number of reviewers can vary on the
content of the submitted paper, and it necessary to synchronise the outcome of these child-cases.
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These patterns are problematic since the workflow execution needs to keep track and synchronise
these multiple instantiations, in order to keep the workflow consistent. It is possible to model such
patterns using Petri nets, but it is quite involving. First, one needs to synchronise all child-cases
of one case but not confuse them with child-cases of another case. Second, one needs keep track of
the number of active instances of child cases (the child cases can only be synchronised when there
are no active child cases; the number of child cases can differ per execution of the workflow).

Advanced synchronisation patterns occur in workflows where branching and merging in splits
and joins are defined optionally: sometimes all branches are taken, sometimes only some branches
are taken. When synchronising such branches the number of branches to synchronise (and wait
for) obviously depends on the number of branches that were activated in the split. The second
issue is that there are a number of patterns for the activity that follow such a synchronisation of
optional branches: sometimes it is desired that this activity is executed only once (first all branches
are synchronised, and then the activity is executed), sometimes it is desired that this activity is
executed once for each active branch. It is theoretically possible to model these patterns in a Petri
net. One can explicitly add synchronisation information into the model (information can be passed
from the split node to the join node), or one can change the firing rule of transitions (and change
the semantics of Petri nets) to consider whether more tokens are able to arrive at a synchronising
transition. Again the burden is on the workflow designer to explicitly model these patterns.

Cancellation patterns occur in workflow where some activity should lead to the withdrawal
(cancellation) of cases from the workflow. Cancellations can occur at random moments and should
have the desired effect independent of the state of the workflow execution. The problem is that
in Petri nets all rules are local to a single transition or state, whereas cancellation is a pattern
that has global effects: it does not matter in which state the workflow is, the entire case should be
cancelled. One could model this with a cancellation transition that tries to remove a token from
any place where it could appear, but the resulting net would be very complicated (it would contain
spaghetti-like arcs to remove tokens from all combinations of all places).

Global Constraints The problem of modelling cancellation patterns in Petri nets is actually
only a specific example of the more general limitation of Petri nets: according to Davulcu et al. [17]
it is not possible to specify global constraints that relate multiple states, resources, or activities to
each other. Local constraints range over a single state, global constraints range over a sequence
of states, or over an execution trace of the workflow. Typical global constraints as formulated by
Klein [27] are occurrence (if a is ever executed, then b must also be executed at some point) and
order (if a is ever executed, then b must be executed before a).

Davulcu [16] describes three common frameworks for specifying workflow are: control flow
graphs, triggers (or event-condition-action rules), and temporal constraints. Control flow graphs,
for example Petri nets, specify the control flow dependencies between activities: they typically
specify the initial and final activities, the successor relation between activities, and the branching
relation between successor activities (e.g. parallel or exclusive). One can add more advanced
controls as discussed in for example [6]. The control flow dependencies between activities can
be enriched with conditions, such that the successor activity may only start if the condition is
satisfied. Such conditions range over the current state of the workflow (which can include both
workflow internal data and external application data).

Because conditions in control flow graphs only range over one (viz. the current) state of the
workflow, it is not possible to express global constraints which range over a sequence of states. One



DERI TR 2005-04-07 11

can construct a control flow graph that satisfies certain global constraints, but one cannot specify
these constraints in the control flow graph. This may seem similar, but it is not in case a set of
constraints can be satisfied by different control flow graphs. Given such a set of constraints, one
can give many control flow graphs that satisfy it; giving just one of those graphs only conveys part
of the constraint information: it gives one solution to the (constraint satisfaction) problem, but
does not describe the problem itself anymore.

Adam et al. [7] show how one can model various dependencies in Petri nets, including control
flow dependencies, and then verify and analyse the resulting Petri nets. They describe how one
can model the solutions to common constraints, including Klein’s constraints, using Petri nets.
The constructed Petri nets contain one solution to the constraint problem, but do not completely
contain the constraints themselves.

What is the difference between modelling the constraints in a declarative framework or con-
structing a Petri net in which the constraints are guaranteed to hold? According to Mukherjee
et al. [29] a workflow specification serves two purposes: verification and scheduling. An important
verification issue concerning workflow specifications is whether some constraint is ensured by some
set of other constraints (so that the constraint does not need to be explicitly enforced). In Petri
nets this means verifying that one Petri net (that contains the explicit constraint) is equivalent
with another Petri net (that does not explicitly contain this constraint), but such verification is in
general undecidable [31].

Scheduling is to automatically construct, from a set of constraints, a Petri net that satisfies these
constraints. This could be done by programming a scheduler that follows the manual approach from
Adam et al. [7]. But such a scheduler does currently not exist [16, p. 34].

2.4 YAWL

To overcome the disadvantages of Petri nets in modelling workflow patterns van der Aalst and ter
Hofstede [5] propose a new workflow language. YAWL is based on Petri nets (workflow nets) but
has additional mechanisms for direct and intuitive modelling of all workflow patterns. YAWL can
be mapped to Petri nets, but has an independent semantics.

A YAWL specification is a hierarchical extended workflow net, consisting of tasks (transitions)
and conditions (places). Tasks are either atomic or composite, referring to a lower level extended
workflow net. Tasks can be directly connected to each other, a hidden condition is then added
implicitly between those tasks.

Basic and advanced branching patterns are directly supported: special tasks exist for modelling
and/xor/or splits and joins. Patterns involving multiple instances are also directly supported:
tasks can have multiple instances, one can specify a lower and upper bound for the number of
instances created, and whether the number of instances for a task can be changed during execution
of the task. One can also specify whether such a multiple-instance task completes when a threshold
number of its instances complete, or whether it should wait for all its instances to complete.

Cancellation patterns are directly supported using a notation that indicates token removal: one
can connect (with rounded rectangles) a task to a number of places, denoting that upon execution
of the task any number of tokens in those places will be removed; the task is not dependent on
these tokens, if none are present the task will still execute.

An operational semantics for YAWL is given by a transition system that specifies (for an exe-
cution of a YAWL specification) the state space and allowed transitions. A definition of soundness,
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comparable to soundness of workflow nets, is given as a minimal notion of correctness; a specifica-
tion is sound if and only if it can properly complete (it completes exactly once) without dangling
tasks (tasks that are still executing).

Since the semantics of YAWL is not given in terms of Petri nets one can not directly reuse
verification and analysis results developed for Petri nets. The authors include a proof of composi-
tionality of YAWL specifications, comparable to compositionality of workflow nets, to indicate that
many results from Petri nets can be carried over to YAWL. However, to the best of our knowledge
such work does not exist yet. Therefore it is difficult to judge the value of YAWL in its achieve-
ments over Petri nets: although it allows far more suitable modelling constructs it is unclear what
analysis can be achieved.4

3 Temporal Logic

Temporal logic is a generic logic for representing and reasoning about temporal information. Dif-
ferent variants of temporal logic have been developed, an overview is given by Chomicki and Toman
[15]. Temporal logic was introduced to computer science by Pnueli [33], it is widely used for formal
specification and verification of concurrent and reactive programs [28].

In general, temporal logic extends classical logic with modal operators that denote a temporal
modifier, such as the necessity operator 2 and the possibility operator 3. Formulas are evaluated
over a path (sequence) of states, 2e is true if e holds in all states in a sequence; 3e is true if e
holds in some state in a sequence.

3.1 Workflow modelling using temporal logic

Attie et al. [9] propose to model intertask dependencies in workflows using computational tree
logic, a temporal logic variant. They extend the work of Klein [27] to a more expressive, more
general, and more formal framework. The approach deals with specifying intertask dependencies in
a multi-database environment, in which certain transactional properties of task executions should
be ensured.

A workflow consists of a number of different tasks that need to be performed. The ordering or
control flow of these tasks is not predefined, instead tasks are (at run time) requested for execution
by several independent databases. A central scheduler is responsible for managing the (scheduled)
execution of these tasks such that they satisfy some global dependencies. The scheduler does not
execute tasks but schedules their execution through an event dispatcher that communicates with
the requesting databases.

The exact nature of the tasks in this framework is not relevant, all tasks are characterised by
events. A task can be in one of the following states: not executing, executing, done, aborted, and
committed. The transitions between these states constitute the significant events of a task: start,
pre-commit, commit, and abort. Intertask dependencies are constraints over these significant task
events.

Events can be forcible (the system can initiate them), rejectable (the system can prevent them),
or delayable (the system can delay them). Table 2 [9] shows the attributes of significant events

4given the current state of theoretical developments YAWL is more interesting as a workflow system than as a
theoretical framework for workflow modelling. As a system it is already quite advanced; we will investigate it during
a system survey in the m3pe project.
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event forcible rejectable delayable
start yes yes yes
pre-commit no no no
commit no yes yes
abort yes no no

Table 2: attributes of significant events

commonly found in database systems. Requested events are submitted to a scheduler, and corre-
spond to a requested phase transition. The scheduler decides whether a submitted event violates
some dependency; if not, the event is allowed to be executed, otherwise the event is delayed (if
delayable) and re-attempted later.

The different attributes of events lead to different strategies to achieve certain dependencies. For
example, Klein’s occurrence dependency e1 → e2 is enforceable if rejectable(e1) and delayable(e1),
since e1 can either be delayed until e2 is submitted, or e1 can be rejected if e2 is never submitted.
The latter can be derived when abnormal termination of e2 has been submitted.

The dependencies between events are specified using computational tree logic. Each dependency
is represented as a finite state automaton. Such a automaton represents the possible orders of events
on which the dependency is satisfied. The automaton can be automatically constructed from the
specification of the dependency.

To check whether a requested event should be permitted or rejected, the scheduler queries all
automata (representing all dependencies). If all automata can accept the event, the event is given
to the dispatcher, and all automata change their local state to stay synchronised to the global
execution state. If all automata can reject the event, i.e. if they can accept a reject transition for
the event, the event is rejected. Otherwise, the event is put in a pending set, and a decision on it
will be reattempted later.

3.2 Temporal logic for workflow verification

Eshuis et al. [19, 21, 22] use temporal logic to specify requirements (constraints) on a workflow
and a temporal logic model checker to verify whether these requirements are met by a workflow
specification. The goal is to hide the use of temporal logic from the workflow modeller: workflow
are specified using UML activity diagrams, requirements on the workflow are (planned to be)
specified using an abstract requirements language. The activity diagram representing a workflow
is automatically transformed into a transition system; the requirements are translated to temporal
logic; a model checker verifies whether a trace of the transition system can be constructed such
that the constraints are satisfied.

3.3 Problems of temporal logic

Rusinkiewicz and Sheth [35] discuss a number of approaches to specification and execution of
transactional workflows. They conclude that although the approach of Attie et al. [9] is correct
and safe, the computational costs are too high. Given that the architecture is centralised they find
the approach not appropriate for managing many dependencies, at least not without additional
optimisations.
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To address these issues, Singh [39, 40] proposes a decentralised process algebra for events, that
can specify acceptable executions or traces of a workflow. Again the language abstracts from
specifics of tasks: event symbols are the atoms of the language. According to Mukherjee et al. [29],
it is still unclear how this algebra can be used for modelling hierarchical workflows, or for verifying
constraint redundancy or whether some constraint is implied by a set of constraints.

A different approach for optimising the computational cost is described by Davulcu et al. [17]:
instead of using general model checking for temporal logic, they develop a verification algorithm
that deals with the specific kind of constraints that occur in workflow management; we describe
this in the next section. Their work addresses an issue in temporal logic: because is general and
powerful, the logic is computationally expensive; using a more specific logic for the problem at hand
could lead to optimised algorithms.

4 Transaction Logic

Several publications propose using Transaction Logic (T R) for modelling, executing and reasoning
about workflows [12, 17, 26, 29, 38]. T R is an extension of classical predicate logic which provides
a logical foundation for state changes in databases and logic programs. The logic programming
fragment of T R provides a logical environment for programming evolutions of databases. The full
logic can be used to reason about such programs [11].

Programming in T R means specifying a set of transactions that operate on a database; given an
initial state of the database, executing these transactions will bring the database to a certain state.
Transactions are either atomic operations (queries and updates on the database) or complex actions
(composed out of atomic operations in certain ways). T R focuses on operators for composing
complex transactions.

Atomic operations: data and transition oracles The atomic operations that are available
to the T R programmer, and the semantics of these actions, are not predefined in the logic. Rather,
one can parametrise the logic with a data oracle and a transition oracle: the data oracle specifies
a set of primitive database queries (the static semantics of the database), the transition oracle
specifies a set of primitive database updates (the dynamic semantics of the database).

A data oracle maps a state identifier to a set of formulas that are true in that state; the logic
does not need to know the real nature of the database: to answer a query on a state it asks the
data oracle which formulas are true in that state, and compares those formulas to the query posed.
A transition oracle maps ordered pairs of state identifiers to sets of ground atomic formulas. Those
ground atoms are elementary updates, the transition oracle defines the set of atoms that produce
a certain state change.

A relational database would for example be represented as follows: the state of a relational
database is a set of ground atomic formulas (relations are predicates, tuples are ground atoms) thus
the data oracle simply returns this set of ground formulas for a given state. The transition oracle
would consist of, for each predicate symbol p in a state, an operation p.ins(x) and p.del(x). The
definition of these insert and delete operations depends on the update semantics of the relational
database: one could define strict updates, such that p.ins(x) ∈ (D1, D2) if and only if x 6∈ D1∧D2 =
D1 ∪ p(x).

One could also define transition oracles that behave differently (that is indeed the point of
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separating the semantics of atomic operations from the rest of the logic); one could for example
define a delete operation that succeeds even if the tuple to be deleted is not in the database.
T R is thus a logic for combining elementary database operations. By separating the definition

of elementary operations from combining them, the logic does not commit itself to a particular
theory of updates and can accommodate a wide variety of database semantics.

Logical programming: executing a database evolution Transactions are executed by asking
the logical proof system to proof a certain formula (a goal). The system tries to construct a proof
of that goal; that proof is built on the axioms of T R and the data and transition oracles. In
constructing a proof the system poses queries and updates to the database.

This is achieved through the notion of executional entailment: formulas in T R have both a
truth value and a side effect on the database. Truth values of formulas are evaluated over paths
(sequences of states). The truth value denotes whether the formula can execute along a path, the
side effect denotes how the database is changed by executing the formula. Formally, this is written
as P,D1,D2 |= u, meaning that, given a transaction base P, the elementary update u changes the
database from state D1 to D2. Which entailments hold depends on the data and transition oracles.

4.1 Flavours of Transaction Logic

There are a number of different flavours of T R; all these flavours come with a model theory for the
full logic, and a sound-and-complete proof theory for the logic programming fragment. The proof
theory for the logic programming fragment can be used to execute programs. The flavours differ
in the operators for composing atomic operations into complex operations. In all these flavours,
atomic formulas (predicates) represent elementary actions or queries on a database.

(Sequential) Transaction Logic [14] For composing atomic formulas into complex ones, (se-
quential) T R uses the usual classical operators (¬,∧,∨,←) and two additional operators: serial
conjunction, denoted ⊗, and a modal operator for executional possibility, denoted 3. These oper-
ators mean the following:

• serial conjunction: α⊗ β means first execute α and then execute β;
M, π |= α ⊗ β if and only if M, π1 |= α and M, π2 |= β and π = π1 • π2. Here M is a path
structure which determines the truth value of each formula on a path (indicating whether the
formula can execute along a multipath), π is a path in M, and • denotes the concatenation
of two paths.

• classical conjunction: α ∧ β means execute α such that it is also a valid execution of β;
M, π |= α ∧ β if and only if M, π |= α and M, π |= β.

• classical disjunction: α∨β means execute either α or β; M, π |= α∨β if and only if M, π |= α
or M, π |= β.

• negation: ¬α means execute anything but α; M, π |= ¬α if and only if M, π 6|= α.

• subprocedure: α ← β means that to execute α one can execute β; M, π |= α if and only if
α← β is in M and M, π |= β.
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• possibility: 3α holds in a state if α will be true at some state in the execution path; M,D |=
3α if and only if M,D • π |= α for some path π.

Concurrent Transaction Logic [13] In (sequential) T R one can only compose elementary
database operations in a sequential manner. One can specify a linear order on a set of transactions,
and build complex transactions out of simpler ones.

Concurrent Transaction Logic (CT R) enables concurrent compositions of operations. It extends
T R with two operators: concurrent composition, denoted |, and a modal operator of isolation,
denoted �.

In CT R the truth value of transactions is evaluated on multipaths, which are sets of sequences of
paths. A multipath records the execution history of a process and represents periods of continuous
execution, separated by periods of

• concurrent composition: α | β means execute α and β concurrently in an interleaved fashion;
M, π |= α | β if and only if M, π1 |= α and M, π2 |= β and the multi-paths π1 and π2 can be
interleaved to π.

• isolation: �α means execute α in isolation without interleaving; M, π |= �α if and only if
M, π |= α and π is a path but not a multipath.

Transaction Datalog [12] Transaction Datalog (T D) is a reduction of the Horn-fragment of
CT R, just as Datalog is a reduction of the Horn-fragment of classical logic. T D is equivalent to
Horn-CT R without negation, and where all the rules are safe, i.e. no variables appear in the head
of a rule that do not appear in the body of a rule. Safeness guarantees that the database domain
is not expanded during execution since no tuples can be introduced during execution.

Bonner [12] develops a layered family of T D-languages, that each restrict a certain modelling
feature. These restrictions gradually reduce the computational complexity of the language. Full T D
is data complete5 for RE6. Removing updates from the language lowers the complexity to PTIME
(since T D without updates reduces to classical Datalog), while removing concurrency from the
language lowers the complexity to EXPTIME. Since these modelling features are necessary for
workflow modelling, a complex restriction called full boundedness is introduced, that provides a
blend of modelling features, and is data complete for NP. Full boundedness means that a recur-
sive transaction can only be executed a finite number of times, and that the data flow between
transactions is acyclic.

4.2 Workflow modelling using T R

Straightforward workflow scheduling Kifer [26] and Bonner [12] describe how variants of
T R can be used for modelling and executing (simulating) workflows. A workflow is specified
as a set of T R formulas that describe dependencies between tasks. Tasks are modelled using
predicates, they can be either atomic or be defined as a subprocedure (this allows for compositional
workflow modelling). A sound-and-complete proof theory exists for the concurrent-Horn subset of

5data completeness of a language for a complexity class means that the most complex transaction of the language
is in that class; the data complexity of a transaction is the complexity of determining whether a given pair of database
states is in that transaction.

6the complexity class denoting Turing completeness
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T R, which includes sequential composition, concurrent composition, and disjunction (it does not
include classical conjunction, as we will see in the next paragraph). The proof theory can be used
to search for proofs of workflow models; such proofs describe executions of workflows, it describes
an execution path of a database. Scheduling a workflow execution consists of proving a goal from
a workflow model.

Simple sequential and concurrent workflow can be defined using the basic T R operators for
sequential and concurrent composition. Choice in a workflow (or preconditions for tasks) can be
modelled by sequential composition of a query and a task: if the query succeeds the task is executed.
Sharing of resources can be modelled using a database predicate that indicates usage and release of
the resource: each task queries for the availability of the resource as precondition for its execution;
before starting to execute, the task removes the availability of the resource from the database, and
inserts it again after committing the task: concurrent processes thus lock shared resources before
using them.

Synchronisation of tasks can also be achieved by communicating through the database: one task
can have as precondition the commitment of another task; this other task indicates its commitment
by inserting some predicate to the database, that is a precondition for the first task. Transactional
properties of the workflow are guaranteed by the logic: if an operation fails inside a transaction,
the transaction is rolled back. Kifer [26] demonstrates how one can easily model partial commits,
if-then-else rules or while-loops on top of the standard T R operators.

Scheduling workflows under constraints Davulcu [16] extends the straightforward applica-
tion of T R to allow efficient reasoning about workflow executions with constraints. Straightforward
execution of T R programs that include conjunctive constraints (of the form program∧constraint)
on the execution is not efficient because the constraints have to be verified at every step of the
execution; when a constraint violation is detected a new execution path must be tried. Determin-
ing whether a CT R program that includes conjunctive constraints is executable (whether it has
some execution path that satisfies all constraints), is NP-complete. On the other hand, Horn-CT R
without classical conjunction is efficiently implementable.

Davulcu describes how to compile certain constraints into the workflow specification during
design-time. The result of the compilation step is a workflow definition in which these constraints
are guaranteed to be satisfied and do not need to be checked anymore during runtime. Although
the compilation step is computationally expensive it can be performed before execution of the
workflow, during design-time; the run-time scheduling of the workflow can then be done efficiently.
After compiling the conjunctive constraints into the workflow, the time complexity of scheduling is
linear in the size of the original control flow graph.

Senkul et al. [38] describe how to integrate CT R with constraint logic programming. A workflow
is specified as a set of CT R formulas and a set of constraints. The workflow consists of activities
and resources, these resources have some cost and can be assigned to activities. Two kinds of
constraints can be expressed:cost constraints that limit the cost of an assignment of resources to
activities, and control constraints that limit the order of assignments of resources to activities. A
schedule for a workflow is constructed using a CT R reasoner and a standard constraint solver.
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5 Summary

We have discussed various formal frameworks for modelling workflows. Petri nets are widely ad-
vocated for modelling workflows, mainly because their state-based approach would allow natural
modelling of certain (state-based) scenarios; other advantages would include their graphical nature,
their formal definition, and the analysis techniques available. We have discussed some critiques in
the literature on Petri net-based workflow modelling, mainly that they are not suitable for modelling
reactive systems (which is what workflow management systems are), that they are not suitable for
modelling certain scenarios (involving advanced synchronisation, multiple instances, and cancel-
lation), and that they are not suitable for modelling and reasoning with global constraints (that
range over a sequence of states).

Temporal logic has also been suggested for workflow modelling, being a general and powerful
logic for modelling temporal situations. We have discussed several approaches that use temporal
logic; the main critique on these approaches is that exactly because temporal logic is very general,
verification techniques are not optimised for the specific situation of workflow modelling.

A number of approaches use Transaction Logic, we have discussed the logic and how one can
model workflows with it. Several variants of Transaction Logic have been developed; these variants
differ in expressive power and computational complexity of reasoning tasks. Transaction Logic
comes with a reasoning system, in which one can reason about general statements and program
and execute database evolutions. Workflows without conjunctive constraints are efficiently im-
plementable in this logic programming environment. With conjunctive constraints the reasoning
becomes hard to implement; some recent approaches show how one can reason efficiently even in the
presence of these constraints, by taking the computational hurdle in a design-time preprocessing
step.

We will use this survey in our future work, where we will try to develop a simple model that
incorporates these frameworks. Such a model can then be used to integrate different modelling
approaches.
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